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Preface to the second edition

This second edition includes a number of improvements to the first edition in
clarifying and extending a number of the derivations, but it serves the same pur-
pose of providing a good learning experience for students. My intention has been
to write a comprehensive textbook for the first-year electromagnetism course. It
could also serve as supplementary reading for graduate students to help them
achieve a better understanding of the subject matter, or for advanced under-
graduate students who want to go into more detail than is generally covered in
the undergraduate course. I hope it will prove to be helpful for students, and
will also be a good textbook from which professors can teach.

Preface to the first edition

This text is designed for first-year graduate students who generally will have
had at least one, and probably two, earlier undergraduate courses in Electro-
magnetism (EM). Because the text starts each topic at a fundamental level and
works up, it could also be used by a good student with little prior knowledge of
EM, but enough background in mathematics to feel comfortable.

The book tells the story of EM, from its 19th-century beginnings to its
present place, somewhere in the 21st century. It starts with simple expositions
of Coulomb’s law and the magnetic law of Biot-Savart. At each stage in the devel-
opment it demonstrates how the subject could be more fundamentally defined.
This continues through the laws of Gauss and Ampere, to the unifying partial
differential equations of Maxwell, and the ensuing electromagnetic radiation.
Then it is shown how the principles of Special Relativity require the unifica-
tion of Electricity and Magnetism that had been achieved earlier by Maxwell,
and extends this to the unification of Space and Time. In the last chapter, the
presentation of Electromagnetism as a Quantum Gauge Theory demonstrates
that EM is a manifestation of the general principle of Local Gauge Invariance
in Quantum Mechanics. A bit more Quantum Mechanics is introduced to show
that Classical Electromagnetism is a limiting form of Quantum Electrodynamics
(QED).

As an afterword, it is shown how the generalization of Gauge Invariance to
coupled fields leads to the unification of the Electromagnetic and Weak Inter-
actions, and the conjectured unification of these interactions with the Strong
Interaction (Grand Unified Theory), ultimately completing the unification of
physics started by Maxwell in the 19th century.

The mathematics is completely unified with the physics at each stage in
the text. There are no separate mathematical appendices or flyleaf formulas to
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memorize. The appropriate mathematics is learned more easily in the context
of a real physics application. The mathematical concepts are developed as they
are needed for the physics. This makes the learning process for both math and
physics more natural and, I hope, more interesting. As with the physics, the
mathematics is introduced first on a basic level, but ends up at the high level
needed for a good development of the physics of EM.

My own Electromagnetism was learned first from Sears 1st Edition, and then
from Panofsky & Phillips. (Information for each book is given in the Bibliogra-
phy.) Over the years I have used P & P, Jackson, and Good & Nelson as texts
for the course I taught. The remarkably interesting books by Mel Schwartz and
Landau & Lifschitz were also used for reference by me and my students. Con-
sciously or subconsciously, much of the material in this text draws on those texts
(and also on Maxwell’s own remarkable 1873 Treatise). But it is not an amal-
gam. You will find many new treatments and new insights. I have tried to write
a new text that is enjoyable to learn from, and to teach from, while maintaining
a high level of rigor and reaching a deep level of understanding.

The chapters should not all be covered at the same rate. The earlier chapters,
especially chapters 1-4, are somewhat of a review and could be covered more
quickly. But they are important, with some new ways of looking at old EM. A
reasonable break in a one year course would be to complete at least chapters
1-8 in the first semester. It would also be reasonable to go as far as section 9.5
(Magnetic Energy).

A word must be added about units. The two texts I learned my early EM
from, Sears 1st Edition (a pioneer in SI, then called Georgi units) and Panofsky
and Phillips, each used Systeme Internationale (SI) units. What I learned was
the roadblock that SI units place in the unification of Electricity with Mag-
netism. (A fuller discussion is in the last section of this book.) I know this book
goes against the trend for the use of SI units in all new textbooks, and thank my
publisher for permitting it. I hope that my book will go some way against this
stream, at least for advanced texts. I use Gaussian units for most of the book,
then dispense with the conversion constant c after Relativity, finally getting to
natural units in the last chapter. This evolution of units follows the course of
unification of Electricity with Magnetism, then with the Weak Interaction, and
maybe more. My recommendation for numerical calculations is to use Gaussian
(or natural) units throughout any calculation (putting SI quantities into Gaus-
sian using Appendix A). Then, at the end, Gaussian quantities can be put into
SI units if desired.

The use of SI units beclouds the obvious connections between the E and D
fields, and between the B and H fields, as well as precluding a simple relativistic
unification of the E and B fields. Beyond this, SI units make the extension of
Classical Electromagnetism to QED, and the unification with Weak Interactions
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particularly unwieldy. In fact, SI units fly in the face of all the advances in the
unification of physics of the past 150 years. I should also mention the introduc-
tion (in SI units) of two misnamed constants (�0 and μ0) that have no physical
meaning and serve only to complicate EM for beginning students as well as
working physicists. Enough about units. I hope you enjoy and learn from my
book.

Jerrold Franklin





Chapter 1

Foundations of Electrostatics

1.1 Coulomb’s Law

Historically, the quantitative study of electrostatics began in 1784 with
Coulomb’s law, which is illustrated in Fig. 1.1. This law states that the electric
force between two point charges is inversely proportional to the square of the
distance between them and directly proportional to the product of the charges,
with the direction of the force being along the straight line connecting the two
charges. In these respects, the Coulomb force between two point charges is simi-
lar to the gravitational force between two point masses. An important difference
between the two force laws is that the electric charge comes in two signs, with
the force between like charges being repulsive, and that between two opposite
charges being attractive.

F

q

r

q´

F´

Figure 1.1: Coulomb’s law for the force between two charges.

Coulomb’s law can be written

F =
kqq �r̂
r2

, (1.1)

1



2 CLASSICAL ELECTROMAGNETISM

giving the force on charge q due to charge q � in terms of the unit vector r̂ that
specifies the direction from q � to q. The unit vector r̂ is a dimensionless vector
defined as a vector divided by its magnitude, r̂ = r/|r|, so Coulomb’s law can
also be written as

F =
kqq �r
r3

. (1.2)

This form of Coulomb’s law is more useful in vector operations.
Because Coulomb’s law is a proportionality, a constant k is included in Eqs.

(1.1) and (1.2). This constant can be chosen to define the unit of electric charge.
Unfortunately, several different definitions have been used for the unit of charge,
and some care is required in treating the units consistently. We take time now
to discuss some of the different systems.

The simplest choice, in terms of Coulomb’s law, is to set k=1, and use
Coulomb’s law to define the unit of electric charge. This leads to the electrostatic
unit (esu) of charge called the statcoulomb, which can be defined in words by
the electrostatic force between two charges, each of one statcoulomb,
a distance one centimeter apart, is one dyne. More simply stated, if all
distances and forces are in cgs (centimeter-gram-second) units, then the charge
in Coulomb’s law (with k=1) is in statcoulombs.

Another choice for the definition of the unit of electric charge uses MKS
(meter-kilogram-second) units in Coulomb’s law with the constant k being given
by k � 9×109. This defines the unit of charge called the coulomb, which could
be defined in words by the electrostatic force between two charges, each
of one coulomb, a distance one meter apart, is 9×109 Newtons.

The coulomb is somewhat more familiar than the statcoulomb because the
common unit of current, the ampere, is defined as one coulomb per second.
Possibly for this reason, the coulomb, and the form of Coulomb’s law with
k � 9×109 was adopted as part of the Systeme International (SI) system of
units, and has gained almost universal usage in elementary physics textbooks.
However, the study and understanding of electrostatics is considerably simpler
using esu units with k=1. The SI system is also particularly awkward to use for
relativistic or quantum formulations of electromagnetism. For this reason, we
will consistently use esu units as part of what is called the Gaussian system
of units relating the esu and emu systems of units, which will be introduced
in Chapter 7. Conversions between the Gaussian system and the SI system are
given in Appendix A.

In the SI system, Coulomb’s law is further complicated by introducing a new
quantity �o defined by

k =
1

4π�o
. (1.3)
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The use of the 1/4π is said to “rationalize” the units because it makes some
later equations (such as Gauss’s law) simpler. The constant �o is sometimes
called “the permittivity of free space.” This terminology is unfortunate because,
in the theory of Quantum Electrodynamics (QED), which is the foundation
theory for Classical Electromagnetism, a frequency dependent permittivity does
arise (vacuum polarization) that has nothing to do with �o.

The unit of charge in the SI system is related to the esu unit by

1 coulomb = 3×109statcoulombs. (1.4)

The number 3×109 relating the statcoulomb to the coulomb is related to a
constant c, and the number 9×109 for the constant k is related to c2. The con-
stant c has dimensions of velocity, and was originally introduced for consistency
between electric and magnetic phenomena. Some years after its introduction,
Maxwell showed that the constant c was, in fact, the speed of light in vacuum
(see Chapter 10). Herman Minkowski then showed in Einstein’s theory of Spe-
cial Relativity (see Chapter 14) that space and time just referred to different
directions in a completely symmetric space-time manifold. This makes c the
conversion constant between the space axes and the time axis (just like the con-
version between miles and feet in an American topographical map). This means
that c is no longer a constant to be measured, but a specified number used to
define the meter in terms of the second. This is the modern definition of the
meter, which is defined so that light travels exactly 299,792,458 meters in one
second. In cgs units, then

c = 2.99792458×1010 cm/sec, (1.5)

which is the number we will use in this text.
The defined value for c is very close to 3×1010 in magnitude (equal to three

significant figures), and we will generally use the value 3 for conversions, with the
understanding that the more accurate value could be used if greater accuracy
were desired. (Whenever the numbers 3 or 9 appear in conversion equations,
the more accurate value could be substituted.) The conversion numbers are also
changed by various powers of 10 related to the difference between cgs and MKS
units, as well as a mismatch in relating the ampere to the emu unit of current,
the abampere. (Ten amperes equal one abampere.) The esu unit of charge and
the emu unit of charge are related by

1 abcoulomb = c statcoulomb, (1.6)

which is the origin of Eq. (1.4) when the powers of 10 are adjusted appropriately.
As an example of the connection between the units, the magnitude of the

charge on an electron is given by

e = 4.80×10−10 statcoulomb, (1.7)
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or
e = 1.60×10−19 coulomb (1.8)

in SI units. It can be seen from the large negative power of 10 required in
either case, that neither system of units is really appropriate for elementary
particle, nuclei, atomic, or molecular physics (microscopic physics) where the
electron charge is the relevant unit of charge. In Chapter 16, we will discuss
other systems of units that are more appropriate for those cases.

The Coulomb’s law force on each of the two charges is proportional to the
product of the two charges, and each force is along their common axis. Thus
Coulomb’s law satisfies Newton’s third law of equal and opposite forces. We could
try to use the third law as a theoretical basis for the symmetrical appearance of
the two charges, and the common action line of the forces, but Newton’s third law
is not a sturdy basis on which to build. Although it is satisfied in electrostatics,
we will see in Chapter 7 that it is violated by the magnetic force between moving
charges. A better principle is the conservation of linear and angular momentum.
Conservation of linear momentum requires the two Coulomb forces to be equal
and opposite. Conservation of angular momentum requires the two forces to be
along the same action line. So we see that it is from these two conservation
laws that the two forces in Coulomb’s law are collinear, and the charges appear
symmetrically.

The fact that the force is proportional to the first power of either charge is
called linearity. A related, but logically somewhat more extended, assumption
(verified by experiment) is that the Coulomb force due to two charges, located
at different points, on a third is the vector sum of the two individual forces. This
is called the superposition principle for the electric force. Extended to the
force due to several charges, the superposition principle leads to the form

F =
�
n

(r− rn)qqn
|r− rn|3 , (1.9)

for the force on a point charge q at r due to other point charges qn located at
points rn. We can see from Eq. (1.9) that the r/r3 form of Coulomb’s law is
more convenient than using r̂/r2, because the unit vector for (r− rn) would be
awkward to use.

1.2 The Electric Field

At this point, it becomes useful to find the force in two stages by introducing
the concept of the electric field E, defined by

F = qE (1.10)
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for the force on a point charge q due to any collection of other charges. With
this definition, Coulomb’s law for the electric field due to a point charge q is

E =
qr̂

r2
(1.11)

The electric field at a point r due to a number of point charges qn, located at
positions rn, is given by

E(r) =
�
n

(r− rn)qn
|r− rn|3 . (1.12)

The effect of Eq. (1.9) can now be accomplished in two steps by first using
Eq. (1.12) to find E, and then Eq. (1.10) to give the force on the point charge
q located at r. Although introduced in this way as a mathematical convenience,
we will see (as often happens in physics) that the electric field has important
physical significance on its own, and is not merely a mathematical construct.

Equation (1.10) defines the electric field E at the point r in the presence
of the charge q. However, care must be exercised if Eq. (1.10) is to be used to
measure the electric field that existed at r before the charge q was introduced.
The introduction of the charge q can polarize any nearby matter, changing the
field at point r. This polarization can even produce an E field where none existed
before the introduction of charge q. (This is a common phenomenom in static
electricity, causing lightning as well as other effects.) For this reason, the use of
a test charge to measure a pre-existing electric field is accomplished by

E0 = lim
q→0

F

q
, (1.13)

where E0 is the electric field that was present before the test charge was intro-
duced.

We have thus far limited our considerations to point charges. In principle,
this is all that is needed because it is believed that all charges appear as point
charges of value ±e for leptons and ±2

3
e or ±1

3
e for quarks (the constituents of

strongly interacting matter). However, the sum in Eq. (1.12) would have of the
order of 1023 terms for macroscopic objects, and be impossible to use. For this
reason, the concept of a continuous charge distribution as an abstraction of a
huge number of point particles is introduced. That is, in Eq. (1.12), the sum on
n is first taken over a large number of the point charges qn that is still small
compared with the total number of charges in a macroscopic sample. This leads
to clusters of charge Δqi each having ni charges, so

Δqi =
ni�

n=ni−1

qn. (1.14)
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The number of charges in each cluster can be large, and yet all charges in
a cluster are still at about the same point, since the total number of charges is
huge for a macroscopic sample. (For instance, one million atoms are contained
in a cube 10−6 cm on a side.) This means that a very large number of point
charges looks like, and can be well aproximated by, a still large collection of
effective point charges Δqi. Then the electric field will be given by

E(r) =
�
i

(r− ri)Δqi
|r− ri|3 . (1.15)

In the limit that the number of charge clusters becomes infinite, (in this case,
“infinity” is of the order of 1020) and the net charge in each cluster approaches
zero compared to the total charge, the sum approaches an integral over charge
differentials dq �,and Eq. (1.15) is replaced by

E(r) =
�

(r− r�)dq �

|r− r�|3 . (1.16)

In Eq. (1.16), there are two different position vectors, which we refer to as the
source vector r� and the field vector r.

The form of the differential charge element dq � depends on the type of charge
distribution. The integral operator

�
dq � becomes�

dq � =
�
λ(r�)dl� for a linear charge density λ, (1.17)�

dq � =
�
σ(r�)dA� for a surface charge density σ, (1.18)�

dq � =
�
ρ(r�)dτ � for a volume charge density ρ, (1.19)

where dl�, dA�, and dτ � are differentials of length, area, and volume, respectively.
Equation (1.16) can also be extended to point charges with the understanding
that �

dq �f(r�) =
�
n

qn f(rn) for point charges qn at positions rn. (1.20)

The charge distribution on which E acts can also be considered continuous,
and then the force on the continuous charge distribution would be

F =
�
dqE(r), (1.21)

with
�
dq given as in Eqs. (1.17-1.20).

Equation (1.16) gives the static electric field for any charge distribution.
The term “static,” as used here, means that all time derivatives of the charge
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distribution are zero, or are neglected if the charges are moving. But using Eq.
(1.16) is a “brute force” method that often requires complicated integration, and
usually is not a practical way to find E. (With the use of modern computers, it
has become more practical to sometimes just do these integrals on the computer.)
There are several simple geometries for which the use of symmetry simplifies the
integrals, and some examples of these are given in the problems at the end of
this chapter. Aside from these simple cases, better methods are usually needed
to find the electric field.

1.3 Electric Potential

The work done by the electric field in moving a charge q from a point A to a
point B along a path C is given by

WC = q
�
ABC

E·dr, (1.22)

where the notation
�
ABC

means that the displacement dr is always along the
path defined by the curve C from A to B. The definition of a conservative force
field is one for which the net work done around any closed path is zero. We now
show that this is true for the E field of a point charge. This follows because the
integrand of Eq. (1.22) can be written as the perfect differential d(−1/r) when
E is given by Coulomb’s law,

d(
−1

r
) =

d(r)

r2
=
d(r·r) 1

2

r2
=

r·dr
r3

, (1.23)

with the final form in Eq. (1.23) being the integrand for the net work on a unit
charge using Coulomb’s law for E. This result can be extended to the E given by
Eq. (1.15) or Eq. (1.16), because each of these are just linear sums of Coulomb’s
law for a single point charge. Thus�

E·dr = 0 (1.24)

for any static electric field integrated around any closed path, and E is said to be
a conservative field. (The notation

�
indicates that the line integral is taken

around a closed path.)
It follows that the work done on a unit charge by a conservative field in

moving from point A to point B is independent of the path taken. This can
be seen in Fig. 1.2 by picking any two points A and B on a closed path, and
breaking the closed path integral into an integral from A to B along path C1,
followed by an integral from B to A along path C2. Then

0 =
�

E·dr =
�
AB1

E·dr+
�
BA2

E·dr =
�
AB1

E·dr −
�
AB2

E·dr, (1.25)
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C2

C1

B

P
A

Figure 1.2: Closed integration path for
�
E·dr.

so �
AB1

E·dr =
�
AB2

E·dr. (1.26)

Since the
�
AB E·dr is independent of the path, it can be written as a scalar

function ψ of only the endpoint positions.�
AB

E·dr = ψ(rA, rB) (1.27)

Then, by the property of an integral that�
ABC

=
�
APC

+
�
PBC

(1.28)

for any point P on the path C, it follows that ψ must be the difference

ψ(rA, rB) = φ(rA)− φ(rB) (1.29)

of a scalar function of position φ(r), evaluated at the two positions.
The scalar function φ(r) is defined as the electric potential, related to the

electric field by

φ(rB)− φ(rA) = −
� rB

rA
E·dr. (1.30)

The integral defining the difference in potentials is independent of the path
chosen from rA to rB. The potential φ defined in this way, with the minus
sign before the integral in Eq. (1.30), has the physical significance of being the
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potential energy per unit charge due to the electric field. Where practicable, it
is convenient to take point A to be at infinity. Then

φ(r) =
� ∞

r
E·dr. (1.31)

This integral represents the work done on a unit charge by the electric field in
moving the charge from the point r to infinity, which is equal to the work we
would have to do to move the charge from infinity to r.

For a point charge, the integration in Eq. (1.31) is easily done using Eq.
(1.23). This results in Coulomb’s law for the potential of a point charge:

φ =
q

r
. (1.32)

In the same way,

φ(r) =
�
n

qn
|r− rn| (1.33)

for a collection of point charges, and

φ(r) =
�

dq �

|r− r �| (1.34)

for continuous charge distributions.
Since the electric potential is the potential energy per unit charge, its units

in the esu system are ergs per esu of charge. A more convenient energy unit for
microphysics (atomic, molecular, nuclear, or elementary particle) is the electron
volt (eV), which is the potential energy that a particle with the electron charge
(e = 4.8×10−10 esu) has in a potential of one volt (SI units). The esu statvolt
equals 300 volts, so the esu result for the potential energy of a particle with
charge e should be multiplied by 300 to give its energy in eV. For instance,
the potential energy of an electron, a distance of 0.529Å from the proton in a
hydrogen atom, is

U = −e
2

r
= −300× 4.8×10−10

0.529×10−8
= −27.2 eV. (1.35)

Note that there is only one factor of e in the numerical calculation. The second e
is included in the definition of the eV unit. The unit Å (pronounced Angstrom)
equals 10−8 cm, and is a convenient unit for atomic and molecular physics be-
cause the typical atomic size is about 1Å.

When using the electron volt energy unit, it is convenient to also give parti-
cle masses in energy units (anticipating relativity), even for low velocities. For
instance, the velocity of an electron of kinetic energy T=13.6 eV can be given as

v

c
=
�
2T

mc2

� 1
2

=
�

27.2

.511× 106

� 1
2

= 7.3× 10−3. (1.36)

where we have used mc2 = 0.511 MeV for the electron.
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1.3.1 Potential gradient

It is usually easier to find the potential than it is to calculate the electric field
by integrating over the charge distribution. What is needed then is a way to
determine the electric field from the potential (i.e., the inverse process of Eq.
(1.31). We begin by first considering the relation between the potential φ and the
field E. A potential field is conveniently pictured by means of equipotentials, that
is, surfaces along which φ is constant. A common example (in two dimensions)
shown in Fig. 1.3 is a topographic map where the lines of equal altitude are
equipotentials of the gravitational field. No work is done in moving along an
equipotential, so the direction of E (“line of force”) is everywhere perpendicular
to the equipotential. Mathematically, that perpendicular direction is defined as
the direction of the gradient of the potential. In our topographic example, this
direction is the steepest direction up the hill. Experimentally, this would be
opposite the direction a ball would roll if placed at rest on the hillside.

φ1

∇φ1

φ2

∇φ
2

φ3

Figure 1.3: Equipotentials φi and gradients ∇φi.

The magnitude of the gradient is defined to be the rate of change of the
potential with respect to distance in the direction of maximum increase. For
infinitesimal dispacements, an equipotential surface in three dimensions can be
approximated by its tangent plane so the change in a scalar field in an infinites-
imal displacement dr will vary as the cosine of the angle between the direction
of maximum gradient and dr. Then a vector gradient (written as gradφ) can
be defined by

dφ(r) = dr·gradφ. (1.37)

From Eq. (1.37), it can be seen that gradφ determines how much the scalar
field φ will change when you move a short distance dr. The definition of gradφ
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by Eq. (1.37) may seem a bit indirect, but Eq. (1.37) can be used to give the
direct definition that

gradφ = n̂
dφ

|dr| . (1.38)

In Eq. (1.38), the unit vector n̂ is in the direction of maximum increase of φ, and
dr is taken in that direction of maximum increase. The direction of the gradient
will always be in the direction of maximum increase and perpendicular to the
equipotentials of the scalar function.

The rate of change of the scalar field in a general direction â, not necessarily
the direction of maximum change, can be defined by choosing dr in that direction
and dividing both sides of Eq. (1.37) by the magnitude |dr|. This is called the
directional derivative of φ, defined by â·gradφ for the rate of change of φ in
the direction â.

To get a slightly different feel for the gradient of a scalar field, we consider
its application in a specific coordinate system. (Up to now, we have used no
specific coordinate system. For the most part, we will continue that practice
since it permits more generality and introduces less algebraic complexity.) In
Cartesian (x, y, z) coordinates, an infinitesimal displacement is given by

dr = îdx+ ĵdy + k̂dz. (1.39)

Then, Eq. (1.37) defining the gradient can be written

dφ(x, y, z) = (̂idx+ ĵdy + k̂dz)·gradφ
= (gradφ)xdx+ (gradφ)ydy + (gradφ)zdz. (1.40)

At the same time, the differential of the function φ(x, y, z) of three variables is
given by

dφ(x, y, z) = ∂xφdx+ ∂yφdy + ∂zφdz. (1.41)

Note that we will use the notation ∂x rather than the more cumbersome ∂
∂x

to
represent the partial derivative in the x direction.

Comparing Eqs. (1.40) and (1.41) for the same differential, and using the
fact that the displacements dx, dy, dz are independent and arbitrary, we see
that

gradφ = î∂xφ+ ĵ∂yφ+ k̂∂zφ. (1.42)

Equation (1.42) holds only in Cartesian coordinates. The form of gradφ is some-
what more complicated in other coordinate systems.

Equation (1.42) can be written in terms of a vector differential operator ∇,
given in Cartesian coordinates by

∇ = î∂x + ĵ∂y + k̂∂z. (1.43)
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Then, the gradient of a scalar field can be written as

gradφ = ∇φ. (1.44)

The representation of grad by the vector differential operator ∇ (usually called
del) is not limited to Cartesian coordinates, although its form is not given by
Eq. (1.43) for other coordinate systems. We will derive a coordinate independent
definition of ∇ later.

From Eq. (1.30), relating φ to E, we see that the integrand in Eq. (1.30) is
the differential

dφ = −E·dr. (1.45)

This is just the definition of the gradient of φ, so comparing Eq. (1.45) with Eq.
(1.37), we see that

E = −∇φ. (1.46)

This permits us to find E once φ has been determined. In words, Eq. (1.46)
states that the electric field is the negative gradient of the potential, or, more
simply, “E equals minus Del phi.”

The actual calculation of ∇φ can be made using a coordinate system, but
it is usually better to use the definition of the gradient in Eq. (1.38) to find
it for various functions of the position vector r directly. We start with r, the
magnitude of r, treated as a scalar field. Its maximum rate of change is in the r̂
direction, and its derivative in that direction is dr/dr = 1. So

∇r = r̂. (1.47)

Next, we consider any scalar function, f(r), of the magnitude of r. The
direction of maximum rate of change of f(r) will also be r̂, and its derivative in
that direction is df/dr. So

∇f(r) = r̂
df

dr
. (1.48)

Applying this result to Coulomb’s law for the potential due to a point charge
gives

E = −∇(
q

r
) = −qr̂ d

dr
(
1

r
) = q

r̂

r2
, (1.49)

so we have derived Coulomb’s law for E from Coulomb’s law for φ.
The same derivation works for the electric field of a collection of point charges

or a continuous charge distribution. For a continuous distribution, this becomes

E(r) = −∇
�

dq
�

|r− r� |
= −

�
dq

�∇ 1

|r− r�|
=

�
(r− r �)dq

�

|r− r�|3 , (1.50)
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where the ∇ can be taken under the integral because it is a partial derivative
that does not act on r�. We have also used the fact that (r − r�) is just r with
the origin displaced by the constant vector r�, so

∇ 1

|r− r�| = − (r− r
�
)

|r− r �|3 . (1.51)

A useful vector identity involving the gradient follows from applying the
definition of the gradient to ∇(r·A), with A being a constant vector:

dr·∇(r·A) = d(r·A) = dr·A. (1.52)

Since dr is an arbitrary displacement, we get the useful result

∇(r·A) = r. (1.53)

1.4 Gauss’s Law

A method for using symmetry to find E without integrating over the charge dis-
tribution is given by Gauss’s law. We first derive Gauss’s law from Coulomb’s
law for a single point charge. We start with the surface integral�

dA·E = q
�

dA· r
r3

(1.54)

of the normal component of E over a closed surface surrounding the point charge,
as shown in Fig. 1.4.

dAdΩ

Figure 1.4: The solid angle dΩ subtended by the surface differential
dA for Gauss’s law.

The vector differential of area dA is an infinitesimal surface element of mag-
nitude dA. Since it is infinitesimal, it approaches a plane surface, tangent to the
closed surface. By convention, its vector direction is along the outward normal
to the closed surface. The integrand of this surface integral can be recognized
as the definition of the solid angle subtended by the differential surface element
dA, as can be seen on Fig. 1.4.

dΩ =
r̂·dA
r2

(1.55)
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Then the surface integral can be written as�
dA·E = q

�
dΩ = 4π q, (1.56)

with the factor 4π arising as the magnitude of the total solid angle of any closed
surface.

If the point charge q were located outside the closed surface, then the surface
integral would be zero. This can be seen in Fig. 1.5. If a plane surface is made to
cut the closed integration surface into two parts, then the integrated solid angle
over each part of the surface will equal in magnitude the solid angle subtended
by the part of the plane surface inside the closed surface. But the two solid
angles will be of opposite sign and just cancel. Thus the integral over the closed
surface will be 4πq for a point charge inside the surface, and zero for a point
charge outside the surface.

dΩ

q

B

E

E
C

A

A´

Figure 1.5: Gauss’s law for charge outside a closed suface. The solid
angle dΩ subtended by each of the curved surfaces ABA� and ACA�

are equal to the solid angle subtended by the plane AA�.

For a collection of point charges, only those inside the surface will contribute
to the integral, and we have Gauss’s law�

dA·E = 4πQenclosed, (1.57)

where Qenclosed is the net charge within the surface. Since a continuous charge
distribution is a very large number of point charges, Gauss’s law for a continuous
distribution is also given by Eq. (1.57), with

Qenclosed =
�
ρ(r)dτ, (1.58)



CHAPTER 1. FOUNDATIONS OF ELECTROSTATICS 15

where the integral is over the volume enclosed by the closed surface. For SI units,
Gauss’s law is written �

dA·E =
1

�0
Qenclosed, SI (1.59)

without the 4π, but introducing �0. Actually, the 4π in Eq. (1.57), the Gaussian
form of Gauss’s law, is a good reminder that it comes from the integral over the
solid angle.

Gauss’s law provides a powerful and simple method to find E whenever
there is enough symmetry to enable the surface integral to be done without
integration. But, if use of Gauss’s law requires a complicated surface integration,
then another method should be used to find E.

1.4.1 Examples of Gauss’s law

Point charge

As a simple example of Gauss’s law, we use it to derive Coulomb’s law for a
point charge, demonstrating the steps used in application of Gauss’s law. The
first step is to recognize the symmetry of the charge configuration, which, in the
case of an isolated point charge, is spherical symmetry about the point charge.
The type of symmetry dictates the Gaussian surface to be used for the surface
integral. For the point charge, this is a sphere, of any radius r, centered at the
point charge so as to make use of the symmetry, as shown in Fig. 1.6. Note
that the Gaussian surface is just a mathematical surface that need not be (and
usually isn’t) any physical surface of the problem.

q
r

E

Figure 1.6: Gaussian sphere for a single point charge.

Next the symmetry is used to make simplifying observations about the E
field at the Gaussian surface. For the point charge, we first observe that E must
be in the radial direction with respect to the charge. This follows, most simply,
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from the principle of insufficient reason. That is, looking at Fig. 1.6, there is no
more reason for E to be directed to the right of radial than to the left, since
there is no reference point other than the charge to define left or right. Another,
more mathematical, derivation of the radial direction of E is the fact that only
one vector, the position vector r, can be defined for this geometry. Thus the
vector function E must be given only in terms of this vector and can only be
E(r) = E(r)r̂. (This reasoning will be used later in the book to simplify other
vector integrations.)

The next observation is that the radial E must have the same magnitude
for all points on the sphere because all such points are equivalent, given the
spherical symmetry. These two observations (that E is radial and constant in
magnitude around the spherical surface) lead to the simplification of Gauss’s
law for this case that �

E·dA = E
�
dA = 4πr2E = 4πq. (1.60)

The
�
dA in Eq. (1.60) was done by just observing that it is the surface area of

the sphere. Then dividing by 4πr2, gives

E(r) =
qr̂

r2
, (1.61)

which is just Coulomb’s law for the electric field.
Because Gauss’s law is derived from Coulomb’s law, and Coulomb’s law for

the electric field can be derived from Gauss’s law, the two laws are mathemat-
ically equivalent. Either one could be chosen as the starting point for electro-
statics. Historically, Coulomb’s law was discovered first, but Gauss’s law is more
general in the sense that Coulomb’s law is just one of the simple applications
of Gauss’s law. Also, as we will see later in discussing Faraday’s “ice bucket”
experiment, Gauss’s law can be verified to greater accuracy than Coulomb’s law.

However, Gauss’s law by itself does not lead to the Coulomb law of force,
Eq.(1.1). Starting from Gauss’s law, the additional assumption that the charge
appearing in F = qE is the same (i.e., interchangeable) with the charge appear-
ing in Gauss’s law. This was implicitly assumed in Coulomb’s force law, leading
to Newton’s third law for the Coulomb force. The equivalence of these two
charges, the source charge in Gauss’s law, and the force charge in F = qE,
must be an additional assumption in classical Electromagnetism.

1.4.2 Spherically symmetric charge (and mass)

distributions

You may have noticed in the derivation of Coulomb’s law from Gauss’s law that
the fact that the charge was a point charge never entered. The only property
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needed for the charge distribution was that it was spherically symmetric and
entirely contained within the Gaussian sphere. Thus the derivation would work
just as well for any such charge distribution, and we have the result that the
electric field outside any spherically symmetric charge distribution is the same
as that for a point charge of the same net charge, located at the center of
spherical symmetry. This means, for instance, that a uniformly charged sphere,
or a uniformly charged shell (or collection of shells), would have the same electric
field (and, therefore, the same electric potential) beyond the charge distribution
as a point charge, and be indistinguishable from a point charge. Of course, inside
the charge distribution, the electric field would be modified, and not fall off like
1/r2.

This result would have been very important in the development of gravita-
tional theory (which is mathematically equivalent to electrostatics), had Newton
known Gauss’s law. Newton formulated his law of gravitation for point masses,
just as the later Coulomb’s law was formulated for point charges. However, New-
ton knew that the Earth and the Moon were not point masses. How could the
point mass formula work so well for extended masses? Newton predated Gauss
so he could be excused for not knowing Gauss’s law. The only formulation he
had for the force on an extended object B exerted by an extended object A was
(we use Coulomb’s law, but the arguments would be the same for Newton’s law
of gravity).

FB =
�
ρB(rB)EA(rB)dτB

=
�
dτB

�
dτAρB(rB)ρA(rA)

(rB − rA)

|rB − rA|3 . (1.62)

The double integral in Eq. (1.62) satisfies Newton’s third law nicely, but is
horrendous to integrate directly, even for two uniformly charged spheres. The
double integral does not look anything like the force between two point charges
(point masses for Newton). Poor Newton worked for many years. He actually
used a complicated geometrical argument (given in his Principia) to show that
the force between two spheres, each with spherically symmetric density, was
exactly the same as the force between two point masses. So all his relatively
simple equations for point masses also worked for large physical objects, as long
as they were spherically symmetric.

We now show how Newton could have saved a lot of work had he known
Gauss’s law. Consider the force between the two extended, but spherically sym-
metric and non-overlapping, charge distributions, A and B, shown in Fig. 1.7a.
The electric field due to A would appear at sphere B like that of a point charge,
by the Gauss’s law argument given above. So, the EA(rB) in Eq.(1.62) would be
that of a point charge, but this would still leave an integral over the extended
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object B. However, we now know that the force on B is the same as if the
extended object A were a point charge, as shown in Fig. 1.7b.

(a)

A

A

B B

r
B

E
AdE

A

(r
B -r

A )

(b)

Figure 1.7: Gauss’s law for two uniformally charged spheres. By
Gauss’s law, the sphere A in Fig. (a) can be replaced by a point
charge in Fig. (b).

We next use Newton’s third law to observe that the force on the (equivalent)
point charge A due to the extended charge B is the same as that on B due to
A. In calculating the force on the point charge A, we use Gauss’s law again to
effectively replace the extended object B by a point charge, so the force on A is
the same as that due to a point charge B. We thus see that the force between A
and B is the same as that between two point charges, without performing any
integral.

Line charge

Gauss’s law can be applied to other simple symmetries. For an infinitely long (in
practical terms, “infinitely long” means length >> r⊥, and “>>” will usually
mean about a factor of 10, although >> is often sneaked in for lower ratios).
straight line charge with linear charge density λ, the Gaussian surface is a cylin-
der of arbitrary length L and radius r⊥, coaxial with the line charge, as shown
in Fig. 1.8.

From the axial symmetry, E is everywhere directed straight out from the line
charge, and can depend only on the perpendicular distance from the line charge,
r⊥. The integral for Gauss’s law is over three surfaces, the curved surface of the
cylinder (I), and the two end caps (II and III). The integrals over the endcaps
vanish because E is always parallel to the surface of the endcaps. E⊥ is constant
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L

II III

I
E⊥

r⊥

λ

Figure 1.8: Gaussian surface for a line charge.

on the curved surface, and can be taken out of the integral, which becomes just
the curved surface area. Then, Gauss’s law becomes

�
E·dA = E⊥

�
I
dA = 2πr⊥LE⊥ = 4πλL, (1.63)

so

E⊥ =
2λ

r⊥
. (1.64)

The potential for the line charge is the radial integral of E⊥

φ(r) = −2λ
� r0

r

dr

r
= 2λ ln(r/r0). (1.65)

E⊥ falls off too slowly for the integral for φ to converge at infinity, and an infinite
amount of work would have to be done to bring a charge from infinity to finite
distances for the infinite line charge. Therefore, an arbitrary finite point, r0, has
been chosen for us to set φ(r0) = 0. As with spherical symmetry, the Gauss’s
law derivation for the wire would also hold outside any axially symmetric charge
distribution that is uniform along its axis. So, E outside any such charge distri-
bution is the same as that for a uniform line charge.

Infinite plane

We next look at an infinite plane sheet with a constant surface charge density
σ. The symmetry of the infinite plane sheet requires that E be perpendicular
to the plane of the sheet, and not depend on position parallel to the sheet. The
appropriate Gaussian surface, shown in Fig. 1.9, is a Gaussian pillbox, a flat
box with identical parallel ends (I and II) of arbitrary area A and any shape.
(Gauss meant a flat box used to carry healing pills, and not the deadly military
fort of the same general shape.) The pillbox is oriented parallel to the sheet of
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charge and is bisected by the sheet. E is parallel to the side (III) of the pillbox,
so the only contribution to the Gauss’s law integral is from the two flat surfaces.

II
III

I

E⊥

E⊥

A σ

Figure 1.9: Gaussian pillbox for an infinite plane.

From the symmetry of the sheet, E has the same magnitude, but opposite
direction, on either side of the sheet. Gauss’s law then leads to

�
E·dA = 2E⊥

�
I
dA = 2E⊥A = 4πσA, (1.66)

so

E⊥ = 2πσ, (1.67)

for an infinite sheet of charge with constant surface charge density σ. Note that
E is independent of the distance from the infinite plane sheet, as long as the
sheet still looks infinite.

The above derivation can be modified slightly to give the discontinuity in E,
when a charged surface is crossed. For the discontinuity, we consider infinitesimal
distances on either side of the surface so that any continuous surface looks like
a plane. Then, using the Gaussian pillbox in Fig. 1.9, the discontinuity in E is
given by

n̂·E1 − n̂·E2 = 4πσ, (1.68)

where n̂ is the unit vector normal to the plane, pointing from region 2 to region
1. Equation (1.67) is a special case of this result when the only source of E is
the surface charge.

1.5 The Variation of E

We have seen that the variation of a scalar field φ is determined by its gradient,
so dφ = dr·∇φ. A vector field can have two different types of variation. It can
vary along its direction, for example, like the flow velocity field, v, of a stream
as the slope gets steeper. The vector field can also vary across its direction, as
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when the velocity is faster in the middle of the stream than near the edges. How
can these two variations be measured?

1.5.1 Divergence

We now give a physical definition of what is called the divergence of a vector
field. The increase of a vector field along its direction is shown in Fig. 1.10. A
measure of the strength of the field is the density of lines of force in the figure,
with the increase in the field indicated by increasing lines of force. We construct
a mathematical volume V enclosed by a surface S, as shown in the figure. The
increase in E can be seen in the figure as more lines of E leaving the volume
than entering it.

V

E

E

Figure 1.10: Divergence of lines of E. More lines leave the volume
than enter it.

A quantitative measure of the excess of lines leaving the volume is given by
the integral

�
S E·dA. This integral can be used to define an average divergence

(written as “div”) of the lines of the vector field. That is

�divE�V =
1

V

�
S
E·dA, (1.69)

where the notation �divE�V denotes the average of divE over the volume V.
The value of divE at a point can be defined by shrinking the integral about the
point, so that

divE = lim
V→0

1

V

�
S
E·dA (1.70)

gives the divergence of the vector field at a point (if the limit exists), and is a
measure of its rate of increase along the direction of the vector field.

As we did with the gradient, we now show what the divergence would look
like in Cartesian coordinates. Figure 1.11 shows an infinitesimal volume (a par-
allelepipid in Cartesian coordinates) of dimensions Δx×Δy×Δz, which will
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shrink to zero at the point x, y, z. The surface integral in the definition of divE
is over the six faces of the parallelepipid, I-VI, so the integral can be written as

divE = I + II + III + IV + V + V I, (1.71)

where I indicates the integral over face I, and similarly for the other faces.

Ex(x)
Ex(x+Δx)

Δy

Δx

Δz

II I

Figure 1.11: Volume element in Cartesian coordinates.

We concentrate first on faces I and II, each parallel to the y − z plane. In
the limit as both Δy and Δz approach zero, the integral over face I approaches
Ex(x+Δx, y, z)ΔyΔz, and that over face II approaches −Ex(x, y, z)ΔyΔz, pro-
vided that Ex is continuous at the point x, y, z. So, for these two faces

I + II = lim
Δx,Δy,Δz→0

[Ex(x+Δx, y, z)ΔyΔz − Ex(x, y, z)ΔyΔz]

ΔxΔyΔz

= lim
Δx→0

[Ex(x+Δx, y, z)− Ex(x, y, z)]

Δx
= ∂xEx, (1.72)

where the last step follows from the definition of the partial derivative.
The integrals over the other four faces are done in the same way, leading to

similar results, with the substitutions x→ y and then x→ z, so

divE = ∂xEx + ∂yEy + ∂zEz (1.73)

in Cartesian coordinates. The form of Eq. (1.73) suggests that divE could be
written as a dot product

divE = ∇·E, (1.74)

of the vector differential operator ∇ with E. Equation (1.74) can be stated in
words as “divergence E equals Del dot E.” The representation of div by the
vector differential operator ∇· is not limited to Cartesian coordinates, although
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its explicit form is not given by Eq. (1.73) for other coordinate systems. We will
derive a coordinate independent definition of ∇ shortly.

Equation (1.69) defines the average of the divergence over a finite volume.
Using the definition of a volume average that

�∇·E�V =
1

V

�
V
∇·Edτ, (1.75)

Eq. (1.69) can be rewritten as�
V
∇·Edτ =

�
S
dA·E. (1.76)

In this form, it is called the divergence theorem. Our derivation of the diver-
gence theorem has been so simple because we have effectively defined the average
divergence for a finite volume by the divergence theorem, and then shown that
this average divergence approaches other definitions of the divergence at a point
as the volume shrinks to the point.

The definition of the divergence given by Eq. (1.70) can be used to evaluate
the divergence of the position vector. The definition gives

∇·r = lim
V→0

1

V

�
r·dA

= lim
V→0

1

V

�
R3dΩ = 3, (1.77)

where we have used the fact that

V =
�
dΩ
� R

0
r2dr =

1

3

�
R3dΩ. (1.78)

(Note that the R in the integral
�
R3dΩ refers to the distance from the origin to

the bounding surface, and can be a function of angle.)
We next calculate the divergence of the electric field in Coulomb’s law to get

∇·
�
qr

r3

�
= q

∇·r
r3

+ qr·∇ 1

r3

=
3q

r3
− 3qr·̂r

r4
= 0, r �= 0. (1.79)

The restriction r �= 0 is necessary because both terms in Eq. (1.79) are singular
at r = 0.

In Eq. (1.79) we have demonstrated the procedure for applying the vector
differential operator ∇ to a combination of functions. We have made use of the
fact that the operator ∇ has two distinct properties:

1. ∇ is a differential operator.
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2. ∇ is a vector.
Because ∇ is a differential operator, it acts on functions one at a time, just as in
d(uv) = udv + vdu. We also follow the convention that the differential operator
acts only on functions to its right, so the order in which ∇ appears must be to
the left of the functions it acts on and to the right of the other functions. As a
vector, ∇ must behave in any expansion like any other vector.

The use of both of these properties can be seen in Eq. (1.79). There are two
terms because ∇ acts separately on the r and on the 1/r3, and, in each term,
the ∇ remains dotted with the r, and to the left of the function it acts on. In
every case, strict adherence to these two properties of ∇ will lead to the correct
evaluation of vector derivatives.

1.5.2 Dirac delta function

We now investigate the behavior of ∇·[r/r3] at r = 0. In fact, something quite
dramatic happens at the origin to the divergence of r/r3, as can be seen by
applying the divergence theorem to r/r3:�

dτ∇·[ r
r3
] =

�
dA·r
r3

=
�
dΩ = 4π. (1.80)

So, even though ∇·[r/r3] vanishes at all but one point, its volume integral is
not zero. This property is consistent with one definition of the Dirac delta
function in three dimensions:�

V
dτδ(r) = 1, if r = 0 inside V,�

V
dτδ(r) = 0, if r �= 0 inside V. (1.81)

Then

∇·
�
r

r3

�
= 4πδ(r). (1.82)

We can now take the divergence of the Coulomb electric field, including the
origin, to get

∇·
�
qr

r3

�
= 4πqδ(r). (1.83)

To apply the divergence theorem to integrals over continuous charge distri-
butions, we extend Eq. (1.82) to

∇·
	
(r− r�)
|r− r�|3



= 4πδ(r− r�), (1.84)

where the constant vector r� just shifts the origin of coordinates from 0 to
r�. In any integral over a volume V containing the point r� = r, the region of
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integration can be shrunk to an infinitesimal volume surrounding r. Then the
integral including δ(r− r�) has the property�

V
δ(r− r�)f(r�)dτ � = f(r), if r� = r inside V�

V
δ(r− r�)f(r�)dτ � = 0, if r� �= r inside V, (1.85)

provided that limr�→r f(r
�) exists. So, an integral with a delta function is the

simplest integral to do. The integration just involves evaluating the rest of the
integrand at the point where the argument of the delta function vanishes. Equa-
tion (1.85) is a somewhat better definition of the Dirac delta function than
Eq. (1.81) because it permits a more general definition of the delta function
with respect to a class of functions f(r). Then, Eq. (1.81) follows from this
definition if f(r�) is chosen to be 1.

We must empasize that the Dirac delta function is not a mathematical func-
tion in the strict sense. In fact, as a function, it does not make sense. It would
vanish everywhere, except where it was not defined (loosely speaking, “infinite”).
That is why we have been careful, in either definition, to define the delta func-
tion only in terms of its property in integrals. When we write it in equations
where we do not integrate, such as Eq. (1.84), it is always with the understand-
ing that the delta function will only be given physical meaning in a subsequent
integration. That is, in equations like Eq. (1.84), the delta function is just an
indication of how to perform a pending integration.

Applying the divergence to the Coulomb integral for the electric field of a
volume distribution of charge leads to

∇·E(r) = ∇·
�

(r− r
�
)ρ(r�)dτ �

|r− r �|3

=
�
ρ(r�)dτ �∇·

	
(r− r

�
)

|r− r �|3|



= 4π
�
ρ(r�)dτ �δ(r− r

�
). (1.86)

Doing the delta function integral gives

∇·E = 4πρ (1.87)

for any continuous charge distribution.
Equation (1.87) has been derived starting from Coulomb’s law, which was the

historical order of development. However, the theory of electrostatics could also
start with the partial differential equation given by Eq. (1.87). Then, Gauss’s
law can be derived by applying the divergence theorem�

S
E·dA =

�
V
∇·Edτ = 4π

�
V
ρ(r)dτ = 4πQenclosed. (1.88)
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And, as we have shown, Gauss’s law can be used to derive Coulomb’s law for
a point charge. So we see there are three, mathematically equivalent “starting
points” for electrostatics (Coulomb’s law, Gauss’s law, ∇·E = 4πρ).

Since Gauss’s law can be derived from ∇·E = 4πρ, and ∇·E = 4πρ can
be derived from Gauss’s law (by following the steps of Eq. (1.87) backward),
they are mathematically equivalent. For this reason, the equation ∇·E = 4πρ is
sometimes called “the differential form of Gauss’s law.” However, the two laws
represent quite different physical manifestations.

Equation (1.87) can be put in terms of the electric potential φ, leading to
Poisson’s equation

∇·(∇φ) = ∇2φ = −4πρ. (1.89)

Equation (1.89) introduces the Laplacian differential operator ∇2 defined by
the application of the divergence to the gradient of a scalar. In Cartesian coor-
dinates, the Laplacian operator is given by

∇2 = ∂2x + ∂2y + ∂2z , (1.90)

but it is more complicated in other coordinate systems. The homogeneous form
of Poisson’s equation, with the source function ρ = 0,

∇2φ = 0 (1.91)

is called Laplace’s equation.

1.5.3 Curl

Next, we look at how E can vary across its direction, and we give a physical
definition of the curl of a vector field. Figure 1.12 shows a vector field having
such a variation, with the density of lines being proportional to the strength of
the field. If this were a velocity field, such as the current of water in a stream,
this variation could be measured experimentally by placing a paddle wheel in the
stream as shown in the figure. Then the rotation of the paddle wheel would be
a measure of the variation of the vector field. This can be done without getting
wet by calculating a line integral around a typical closed curve C, as shown on
the figure.

This integral can be used to define an average value of the variation (called
rot or, more commonly, curl) over a surface S bounded by the curve C. The
average curl is defined by

�n̂·curlE�S =
1

S

�
C
dr·E, (1.92)
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C

Figure 1.12: Velocity field with curl. The current increases going down
on the figure causing the paddle wheel to rotate counterclockwise.

where n̂ is the unit vector normal to the surface S at any point. Note that,
by this definition, the combination S�n̂·curlE�S does not depend on the shape
of the surface S, but only on the bounding path C. Since the variation will be
different in different directions, it is the average value of the normal component
of curl that is defined by Eq. (1.92).

The positive sign for the direction of n̂ is taken by convention to be the bo-
real direction. That is, if integral around the contour C is taken in the direction
of the rotation of the Earth, then the north pole is in the positive direction
as shown on Fig. 1.13a. This is also stated as the right-hand rule: If the in-
tegral around the contour C is taken in the direction that the four fingers of
the right-hand curl as they tend to close, then the right thumb points in the
positive direction for n̂, as shown in Fig. 1.13b. This will be our general sign
convention relating the direction of integration around a closed curve and the
positive direction of the normal vector to any surface bounded by the curve.

N +

S
(a) (b)

Figure 1.13: (a) Boreal direction on the globe. (b) Right-hand rule for
positive direction.

The value of curlE at a point can be defined by starting with a smooth
surface through the point and taking the limit as the curve bounding the surface
shrinks about the point, and the enclosed surface shrinks to zero area. This gives
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the definition of curl at a point:

(curlE)n = lim
S→0

1

S

�
C
dr·E. (1.93)

As the curve C shrinks to a point, the smooth surface approaches its tangent
plane at the point, and (curlE)n in Eq. (1.92) represents the component of curl
in the direction of the normal vector n̂ to the tangent plane.

With curlE defined by Eq. (1.93), it is possible to find its specific form
in Cartesian coordinates. To find curlE at the point x, y, z, we consider an
infinestimal rectangle of dimension Δx by Δy parallel to the x − y plane, as
shown in Fig. 1.14. The line integral around the rectangle consists of four parts,

E (x)

III

I

IV

II

Ex(x+Δx)

Δx

Δy

Figure 1.14: Differential surface for curl in Cartesian coordinates.

so

lim
S→0

1

S

�
C
dr·E = I + II + II + IV. (1.94)

As Δy approaches zero, we can make the replacement

� y+Δy

y
f(y �)dy � → f(y)Δy, (1.95)

provided that f(y) is continuous at y. Then the contribution to Eq. (1.93) from
sides I and II is

I + II = lim
Δx,Δy→0

[Ey(x+Δx, y, z)Δy − Ey(x, y, z)Δy]

ΔxΔy

= lim
Δx→0

[Ey(x+Δx, y, z)− Ey(x, y, z)]

Δx
= ∂xEy. (1.96)




